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Abstract

In this note, we consider in discrete-time finite state approximations of an extended
Ramsey type model under stochastic uncertainty. Recalling standard procedure of
stochastic dynamic programming we present explicit formulas for finding maximum
global utility of the consumers (i.e. sum of total discounted instantaneous utilities)
in the approximated model along with error bounds of the approximations.
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1 Classical Ramsey Model in Discrete-Time Setting

1.1 Formulation and Notations

The heart of the seminal paper of F. Ramsey [10] on mathematical theory of saving is an
economy producing output from labour and capital and the task is to decide how to divide
production between consumption and capital accumulation to maximize the global utility
of the consumers. In contrast to the Ramsey’s formulation considering the problem in
continuous-time setting, in this note we work with a discrete-time version of the growth
model.

Since in [10] the problem was considered in continuous-time setting, Ramsey suggested
some variational methods for finding an optimal policy how to divide the production
between consumption and capital accumulation.



Considering the Ramsey problem in discrete-time setting, the respective mathematical
model can be formulated as follows:

We consider at discrete-time points t = 0, 1, . . . an economy in which at each time t there
are Lt identical consumers with consumption ct per consumer. The number of consumers
grow very slowly in time, i.e. Lt = L0(1 + n)t for t = 0, 1, . . . with α := (1 + n) ≈ 1. The
economy produces at times t = 0, 1, . . . gross output Ỹt using only two inputs: capital Kt

and labour Lt = L0(1 + n)t. A production function F (Kt, Lt) relates input to output, i.e.

Ỹt = F (Kt, Lt) with K0 > 0, L0 > 0 given. (1)

In each period output must be split between consumption ctLt and gross investment It,
i.e.

ctLt + It ≤ Ỹt = F (Kt, Lt), (2)

investment It is used in whole (along with the depreciated capital Kt) for the capital
Kt+1. In addition, capital is assumed to depreciate at a constant rate δ ∈ (0, 1), so capital
related to gross investment at time point t+ 1 is equal to

Kt+1 = (1− δ)Kt + It. (3)

Preferences over consumption of a single consumer (resp. the considered Lt consumers)
are taken to be of the form

T
∑

t=0

βtu(ct) (resp. L0

T
∑

t=0

(αβ)tu(ct) ) for a finite or infinite time horizon T, (4)

where u(·) is instantaneous utility function and β < 1 is a given discount factor. Observe
that if αβ < 1 then L0

∑∞

t=0 (αβ)
tu(ct) <∞.

The problem is to find the rule how to split production between consumption and
capital accumulation that maximizes global utility of the consumers for a finite or infinite
time horizon T .

Denoting by kt := Kt/Lt the capital per consumer at time t, and similarly by yt :=
Yt/Lt = F (kt, 1) the output per consumer at time t (note that F (·, ·) is assumed to be
homogeneous of degree one, i.e. F (θK, θL) = θF (K,L) for any θ ∈ R), from (2), (3) we
get

ct + kt+1 − (1− δ)kt ≤ yt = F (kt, 1), (5)

and if we define the function f(·) by f(k) := F (k, 1)+ (1− δ)k then (5) can be written as

ct + kt+1 ≤ yt = f(kt) (6)

where yt is the total output at time t.

In the above formulation we assume that the production function f(k) and the con-
sumption function u(c) fulfil some standard assumptions on production and consumption
functions, in particular, that:

80



AS 1. The function u(c) : R+ → R+ is twice continuously differentiable and satisfies
u(0) = 0. Moreover, u(c) is strictly increasing and concave (i.e., its derivatives satisfy
u′(·) > 0 and u′′(·) < 0) with u′(0) = +∞ (so-called Inada Condition).

AS 2. The function f(k) : R+ → R+ is twice continuously differentiable and satisfies
f(0) = 0. Moreover, f(k) is strictly increasing and concave (i.e., its derivatives satisfy
f ′(·) > 0 and f ′′(·) < 0) with f ′(0) = M < +∞, limk→∞ f ′(k) < 1.

This note presents a slight extension of the author’s paper [13] in which the main ideas
concerning discretization and further extension of the stochastic version of the Ramsey
model were reported. However, in the present paper computational aspects of the dis-
cretized stochastic models are investigated in detail; in particular, algorithmic procedures
along with error bound and sensitivity analysis are elaborated.

1.2 Finding Optimal Policies by Dynamic Programming

Finding a sequence (k, c)T = {k0, c0, k1, c1, . . . , kT , cT} with a given k0 > 0 maximizing
(4) under condition (6) can be formulated as:

Find

Ûβ
k0
(T ) := max

(k,c)T

T
∑

t=0

βtu(ct) for a finite or infinite time horizon T, (7)

under the constraints (for t = 0, 1, . . . , T )

ct + kt+1 ≤ f(kt) (8)

ct ≥ 0, kt ≥ 0, with k0 > 0 given. (9)

Note that since u(·), f(·) are increasing (cf. assumptions AS 1 and AS 2) it is possible to
replace the constraints (8), (9) by

ct + kt+1 = f(kt), with f(kt) = yt (10)

ct ≥ 0, kt ≥ 0, k0 > 0 given, and if T < +∞ also kT+1 = 0, (11)

and hence also (7) can be written as

Ûβ
k0
(T ) = max

kT

T
∑

t=0

βtu(f(kt)− kt+1) for a finite or infinite time horizon T, (12)

where kT = {k0, k1, . . . , kT} and Uβ,kT

k0
(T ) =

∑T

t=0 β
tu(f(kt)− kt+1).

Observe that in virtue of assumption AS 2 and (8), (10) it holds:

Fact 1. i) If f ′(0) ≤ 1 (and hence f ′(k) < 1 for all k > 0), then by (10) every sequence
{k0, k1, . . . , kt, . . .} must be decreasing and limt→∞ kt = 0.
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ii) If f ′(0) > 1 (and hence, since limk→∞ f ′(k) < 1, there exists some k′ such that f ′(k) < 1
for all k > k′), then there exists some k∗ > 0 such that f(k∗) = k∗ and some km ∈ (0, k∗)
such that f(km)− km = maxk[f(k)− k].
Supposing that k0 > k∗ then elements of the sequence {k0, k1, . . . , kt, . . .} must be de-
creasing for all kt > k∗. Furthermore, if for some t = t` it holds kt` < k∗ then
kt < k∗ for all t ≥ t`, but {kt, t ≥ t`} need not be monotonous. However, in any
case kt ≤ kmax = max(k0, k

∗) and f(kt) ≤ f(kmax) =: ymax for all t = 0, 1, . . . .

iii) In case that k′
0 > k0 > 0 then Ûβ

k0
(T ) > Ûβ

k′0
(T ). This can be easily verified since if we

start with capital k′
0 > k0, selecting consumption at time 0 such that c′0 + k1 = f(k′0) >

c0 + k1 = f(k0) (recall that f(k′
0) > f(k0) and u(·) is increasing) and following for every

t > 0 decisions given by kT ≡ (k0, k1, . . . , kT ) (the sequence of capital stocks yielding
Ûβ

k0
(T ) in (12)), then u(f(k′

0)− k1) > u(f(k0)− k1) and u(f(k′t)− k′t+1) with k′t ≡ kt for
all t ≥ 1).

On employing separability occurring in (12), for finite T and a given k0 > 0 we get

Ûβ
k0
(T ) = max

k1

[

u(f(k0)−k1) + βÛβ
k1
(T−1)

]

,

Ûβ
k1
(T−1) = max

k2

[

u(f(k1)−k2) + βÛβ
k2
(T−2)

]

,

...

Ûβ
kT−2

(2) = max
kT−1

[

u(f(kT−2−kT−1) + βÛβ
kT−1

(1)
]

,

Ûβ
kT−1

(1) = max
kT

[u(f(kT )] ,

and hence (using the celebrated Bellman’s “principle of optimality”, see, e.g. [1])

Ûβ
k0
(T ) = max

k1

[u(f(k1)− k0) + βmax
k2

[u(f(k2)− k1)

+βmax
k3

[u(f(k3)− k2) + βmax
k4

[u(f(k4)− k3)

+ . . .+ βmax
kT−1

[u(f(kT−2), kT−1) + βmax
kT

u(kT )] . . .]]]]. (13)

Now let us introduce the opposite time orientation, i.e. if T is fixed then for n =
0, 1, . . . , T , let cn = cT−n, k

n = kT−n. Then (13) can be rewritten as:

Ûβ

kT
(T ) = max

kT−1
[u(f(kT−1)− kT ) + βmax

kT−2
[u(f(kT−2)− kT−1)

+βmax
kT−3

[u(f(kT−3)− kT−2) + βmax
kT−4

[u(f(kT−4)− kT−3)

+ . . .+ βmax
k1

[u(k1, 1) + βmax
k0

u(k0)] . . .]]]] (14)

or

Ûβ
kn(n) = max

kn−1
[u(f(kn−1)− kn) + βÛβ

kn−1(n− 1)] for n = 1, 2, . . . , T, (15)

where Ûβ

k0(0) = max
k0

u(k0) for the selected value k0 > 0.
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2 Economic Growth Under Uncertainty:

Probabilistic Approach

2.1 Uncertainty Modelled by Markov Processes

Up to now we have assumed that for a given kt the total output yt = f(kt) is determined by
(10). To include random shocks or imprecisions into the model, we shall assume that for a
given value of kt we obtain the output yt only with known probability p(kt) ≡ p(kt; 0) < 1,
hence with probability p̄(kt) = 1− p(kt) the total output will be different from yt and can
attain maximal and minimal possible values fmax(kt) and fmin(kt) respectively (of course,
we assume that assumptions AS 2 also hold for fmax(·) and fmin(·)). Since (cf. assumption
AS 1) instantaneous utility function u(·) is increasing, on replacing the production function
f(kt) by fmax(kt) and fmin(kt) we obtain upper or lower bounds on the total output at time

t and also, for fixed values of kt, also the upper and lower bounds on the maximal global

utility of the consumers respectively. This approach is relatively simple, but ignores a lot
of information and yields only a very rough bounds on optimal values.

Obviously, significantly better results can be obtained if we replace the rough estimates
of yt generated by means of fmax(kt) and fmin(kt) by a more detailed information on the
(random) output yt generated by the capital kt.

Recall that by Fact 1ii the values of kt, yt = f(kt) (and hence also ct) are bounded by
kmax, ymax respectively with fmax := ymax.

To this end we shall assume that in (6), (10)

yt = Ztf(kt), where Z = {Zt, t = 0, 1, . . .} is a random process. (16)

In the literature (cf. [5, 8] or the monograph [14]) it is usually assumed that Z is a Markov
process (in general with state space R) or an autoregressive process. Moreover, we assume
that the decision maker can observe the current values of the total output yt and then

select the value of kt+1. Such an extension well corresponds to the models introduced and
studied in [14] and also in [5, 8]. Unfortunately, assuming that Z is a Markov process with
compact state space R then a rigorous treatment of the model given by (15) requires a very
sophisticated mathematics (see [3] or [14]) and is not suitable for numerical computation.
To make the model computationally tractable we shall approximate our system governed
by (10), (11) (with f(·) = fmax(·)) by a discretized model with finite state space.

2.2 Discretized Markov Model

In what follows, we shall assume that the values of ct, kt, and yt take on only discrete
values. In particular, we assume that for sufficiently small ∆ > 0 there exists nonnegative
integers c̄t, k̄t, and ȳt such that for every t = 0, 1, . . . it holds:
c̄t∆ = ct, k̄t∆ = kt, and ȳt∆ = yt with k̄t ≤ K := kmax/∆ and similarly ȳt ≤ Y := ymax/∆.
Let elements of k̄t be labelled by integers from IK = {0, 1, . . . , K} and elements of ȳt by
integers from IY = {0, 1, . . . , Y }. Hence for the total output yt generated by the “ran-
domized” production function we get for ` = 0, 1, 2, . . . , L

ȳt = f(k̄t)− `∆ with known probability p(k̄t; `); obviously,
L

∑

`=0

p(k̄t; `) = 1, (17)
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and let p(k̄t) = [p(k̄t; 0), p(k̄t; 1), . . . , p(k̄t;L)].
We shall assume that p(k̄t) is “close” to p(k̄t+1) for every k̄t, i.e. assume existence of
some ∆̃ > 0 such that |p(k̄t+1; `)− p(k̄t; `)| < ∆̃ for every ` = 1, . . . , L and k̄t = 1, . . . , K.

If the (random) total output at time t ȳt = ȳ then the decision maker have option to
invest for the next time point the capital kt+1 = k̄t+1∆ where k̄t+1 = ḡt, . . . , ȳt (with given
ḡt = 0, 1, . . . , fmax(k̄t)), and hence βtu((ȳ − k̄t+1)∆) is the instantaneous utility accrued
at time t to the global utility. In accordance with decision d taken at time t if the output
ȳt = ȳ, at the next time t+1 capital k̄t+1 will be employed, see also the following diagram

k̄t

p(k̄t,ȳt)

−−−−−→ ȳt
d

−−−→ k̄t+1.

Using the above discretization and taking decisions with respect to the current states,
the development of the economy over time can be well described by a (structured) Markov
reward chain X = {Xτ , τ = 0, 1, . . .} with finite state space I = IK ∪IY (with IK ∩IY =
∅), transition probabilities p(k̄t; ȳt) = pij, for i = k̄t ∈ IK , j = ȳt ∈ IY , and a “non-
random” transition from state j = ȳt ∈ IY to state ` = k̄t ∈ IK associated with one-stage

reward rj` = u((ȳt− k̄t+1)∆). Observe that actually “two transitions” of the Markov chain
X = {Xτ , τ = 0, 1, . . .} occur within one-time period of the considered economy model and
the one-stage reward is accrued only in even transitions. Hence the global utility (i.e. the
total discounted reward of the Markov chain X) U β

k0
(T ) = E{

∑T

t=1 β
trX2t−1,X2t

|X0 = k̄0}
(the symbol E is reserved for expectation).

3 Some Generalization of the Discretized Model

3.1 Extension of the Stochastic Growth Model

Up to now we have assumed that the probability vector p(k̄t) cannot be influenced by the
decision maker. Now we extend the model in such a way that p(k̄t) will be replaced by
a family of vectors p(k̄t, d(k̄t)) for d(k̄t) = 1, 2, . . . , D depending on the decision taken in
state k̄t. Moreover, some cost, denoted c(d(k̄t)), will be accrued to this decision.

Moreover, we shall assume that the decision d, taken if at time t the output ȳt = ȳ,
assign the desired values of capital only with some probability, i.e. there is a set of feasible
decisions d(ȳt) = 1, 2, . . . , D each of them assigns the value of capital k̄t+1 with known
probability vector p(ȳt, d(ȳt)) = [p(k̄t; 1, d(ȳt)), p(k̄t; 2, d(ȳt)), . . . , p(k̄t; ȳt, d(ȳt))].

We shall assume that p(k̄t, d) and p(ȳt, d) is “close” to p(k̄t+1, d) and to p(ȳt+1, d)

for every k̄t and ȳt respectively, i.e. we assume existence of some ∆̃ > 0 such that

|p(k̄t+1; `, d)− p(k̄t; `, d)| < ∆̃ for every ` = 1, . . . , L and k̄t = 1, . . . , K and |p(ȳt+1; `, d)−

p(ȳt; `, d)| < ∆̃ for every ` = 1, . . . , D and ȳt = 1, . . . , K. So the development over time

is given by the following diagram

k̄t

c(d(k̄t))
p(k̄t,ȳt;d(k̄t))

−−−−−−−−→ ȳt

u((ȳt−k̄t+1)∆)

p(ȳt,k̄t+1;d(ȳt))

−−−−−−−−−→ k̄t+1

84



In contrast to the previous model transition from state ȳt ∈ IY to state k̄t ∈ IK is
random and given by a known probability vector p(ȳt, d(ȳt)) depending on the selected
decision.

3.2 Formulation in Terms of Stochastic Dynamic Programming

The above model can be considered as a structured standard Markov decision chain with
finite state space I = I1∪I2 (with I1∩I2 = ∅), finite set Di = {0, 1, . . . , d(i)} of possible
decisions (actions) in state i ∈ I and the following transition and reward structure:

pij(a) : transition probability from i→ j (i, j ∈ I) if action a ∈ Di is selected,

rij : one-stage reward for a transition from i→ j, with

rij = u((i− j)∆) if i ∈ I2 and j ∈ I1,

rij = c(a) if i ∈ I1 and j ∈ I2, and action a is selected,

ri(a) : expected value of the one-stage rewards incurred in state i if decision (or action)

a ∈ Di is selected in state i; in particular ri(a) =
∑

j∈I

pij(a) · rij.

A policy controlling the chain, say π, is a rule how to select actions in each state. Policy
π is then fully identified by a sequence {dτ , τ = 0, 1, . . .} of decision vectors (of dimension
K and Y in odd and even steps respectively) whose ith element dτ (i) ∈ Di identifies the
action taken if Xτ = i. If we restrict on stationary policies, i.e. the rules selecting actions
only with respect to the current state of Markov chain X, then policy π is fully determined
by dt ≡ d. Observe that decision vector d then completely identifies the transition proba-
bility matrix P (d) and the ith row of P (d) has elements pi1(d(i)), . . . , piN(d(i)). Similarly,
r(d) is a (column) vector of one-stage expected rewards (i.e. i-th element of r(d) is equal
to ri(d(i))).

Let the vector Uβ,π(τ) denote expectation of the (random) global utility ξτ received in
the τ next transitions of the considered Markov chain X if policy π = (dτ ) is followed,
given the initial state X0 = i, i.e., for the elements of Uβ,π(τ) we have Uβ,π

i (τ) = Eπ
i [ξτ ]

where ξτ =
∑τ−1

k=0 β
krXk,Xk+1

and Eπ
i is the expectation if X0 = i and policy π = (dτ ) is

followed. Then obviously

Uβ,π
i (τ + 1) = ri(dτ (i)) + β

∑

j∈I

pij(dτ (i)) · U
β,π
j (τ), i ∈ I (18)

and for t (or τ) tending to infinity, i.e. when lim
τ→∞

Uβ,π
i (τ) = Uβ,π

i , (18) takes on the form

Uβ,π
i = ri(d(i)) + β

∑

j∈I

pij(d(i)) · U
β,π
j , i ∈ I. (19)

If π̂T is (in general nonstationary) policy maximizing the values U β,π
i (T ) for the fixed time

horizon T then

U π̂τ

i (τ) = max
d∈Di

[ri(dτ (i))+β
∑

j∈I

pij(dτ (i)) ·U
π̂τ−1

j (τ−1)], for τ = T, T−1, . . . , 1, 0. (20)

Furthermore, for T tending to infinity, i.e. when lim
T→∞

U π̂T

i (T ) = U π̂
i , then (19), (20) read

U π̂
i = max

d∈Di

[ri(d(i)) + β
∑

j∈I

pij(d(i)) · U
π̂
j ], i ∈ I. (21)
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3.3 Computation of Optimal Policies

In case that the time horizon T is finite, it is necessary to calculate (backwards) the
dynamic programming recursion according to (20). Considering the infinite time horizon
(i.e. if T → ∞), finding a solution of (21) is in some aspects much easier (optimal
policy can be found in the class of stationary policies (i.e. policies selecting actions only
with respect to the current state of Markov chain) and can be performed either by value
iterations (successive approximations) or by policy iterations.

Algorithm 1 (Policy iterations).

Step 0. Select arbitrary policy, say d(0).
Step 1 – Policy evaluation. For stationary policy d(n) find v = v(d(n)) as the solution of

v = r(d(n)) + βP (d(n)).

Step 2 – Policy improvement. For a given v(d(n)) find policy d(n+1) such that

r(d(n+1)) + βP (d(n+1))v(d(n)) = max
d∈D

[r(f) + βP (d)v(d(n))].

If there exists d(n+1) = d(n), then stop and policy d(n) is an optimal policy, else go to
Step 1.

Algorithm 2 (Value iteration).

Select v(0) = 0, choose some (sufficiently small) ε > 0, and iterate

v(n+1) := max
d∈D

[r(d) + βP (d)v(n)] for n = 0, 1, . . . .

If ‖v(n+1) − v(n)‖ < ε then stop.

Remark. Observe that v(n)’s are identical with Uβ,π(n) if policy π is identified by the
decision vectors generated by Algorithm 2.

Algorithm 3 (Value iteration (modified)).

Select w(0) = 0, choose some (sufficiently small) ε > 0, set w
(n)
N ≡ 0 for n = 0, 1, . . ., and

iterate
w(n+1) := max

d∈D
[r(d) + βP (d)w(n) − (1− β)v

(n)
N ].

If ‖w(n+1) − w(n)‖ < ε then stop.

3.4 Error Bounds

3.4.1 Rough Bounds

Observe that in Section 2.2 the difference of all data in the original and discretized model
must be nongreater than the considered values ∆ > 0.
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Since the difference between the original and discretized discounted rewards accrued at
the stage n is is nongreater than βn·∆, taking into account only the considered discounting,
the error caused by approximations in the finite horizon model (with n transitions), resp.
in the infinite horizon model, is obviously bounded

by ∆ ·
1− βn

1− β
resp. by ∆ ·

1

1− β
.

Of course, the above bounds do not take into consideration transition probabilities as well
as imprecisions in transition probabilities arising by discretization.

3.4.2 Finer Bounds

Taking into account also the errors arising by discretization in the transition probability
matrix, for the original model, denoted (P, r), and the discretized model, denoted (P̄ , r̄)
we immediately get (for the sake of brevity we consider only stationary policies, and
suppose that r, r̄ ≥ 0; I denotes an identity matrix)

v̄ =
∞

∑

k=0

(βP̄ )k · r̄ = [I − βP̄ ]−1 · r̄

v̄(n) =
n−1
∑

k=0

(βP̄ )k · r̄ =
∞

∑

k=0

(βP̄ )k · r̄ − (βP̄ )n
∞

∑

k=0

(βP̄ )k · r̄.

However, since r −∆ · e ≤ r̄ ≤ r +∆ · e (e denotes a unit vector)

v̄ ≤ [I − β(P +∆I)]−1 · r̄ +∆ · [I − β(P +∆I)]−1 · e

v̄ ≥ [I − β(P −∆I)]−1 · r̄ −∆ · [I − β(P −∆I)]−1 · e

and the inverse of the matrix [I − βP̄ ] can be well approximated e.g. by

[I − β(P ±∆I)]−1 ≈ [I − βP ]−1 ±∆ ·
β

1− β
· [I − βP ]−1

or by
[I − β(P ±∆I)]−1 ≈ [I − βP ]−1 · {I ±∆β · [I − βP ]−1}.

(The above formulae follow on expanding [I − β(P ±∆I)]−1 and collecting the terms.)
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